Course Code EPE 802	Credit Hours (Th-Pr) 3-0	Advanced Power System Stability and Transient Studies (core)	Contact Hrs/Week (Th-Pr) 3-0	Total Contact Hrs (Th-Pr) 45-0
---------------------------	--------------------------------	--	---------------------------------------	---

Course Outline:

1. Topics include introduction to the power system stability problem, rotor angle stability, voltage stability, voltage collapse, small signal stability, midterm and long term stability, sub synchronous oscillations, synchronous machine modelling and representation in stability studies, Power System Loads, Excitation Systems, Prime Movers and Energy supply systems, switching surges, mechanisms of transient generation, insulation coordination, grounding, surge protection devices, and shielding.

Eligibility Criteria

2. B.E (Electrical Engineering)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No			Code	
-				
a.	Power System Control	Anderson and Fouad	AF	Text Book
	and Stability			
b.	Power System Control	Prabha Kundur	PK	Text Book
	and Stability			
C.	Electrical Transients in	Allan Greenwood	AG	Reference
	Power Systems			
d.	Power System Dynamics :	Jan Machowski	JM	Reference
	Stability and Control			
e.	Power System Stability :	Abelhay A. Sallam	AA	Reference
	Modelling , Analysis and			
	Control			

Course Objectives:

Understanding of the modelling of synchronous machines, maintaining and handling the inertial problem in power system, pre and post disturbance state of the power system and transients caused by switching and lightning strikes

Learning outcome:

On successful completion of the module the student will be able to:

- Recognize and demonstrate a comprehensive understanding of the different types of disturbances in a power system
- Perform comprehensive transient's studies caused by different contingencies
- Perform modelling and analyses of synchronous machines
- Conduct estimation studies in a power system

Topics Covered:

Ν	Topics	Text	Contact
о.		Book	Hours
1.	Power System Stability Overview	PK &	08
	 Understanding power system stability 	AA	
	Classification of power system stability		
	Small signal stability		
	Transient stability		
	Stability margin increase		
	Need for modelling		
2.	Modelling of synchronous machine	PK &	08
	Synchronous machine equations	AA	
	Parks Transformation		
	Machine Parameters in per units		
	 Synchronous machine equivalent circuits 		
	Flux Linkage space state model		
3.	Synchronous machine connected to a power system	PK &	08
	 Synchronous machine connected to an infinite bus 	AA	
	Synchronous machine connected to integrated power system		
	Synchronous machine parameter under different operating		
	modes		
	Excitation System Modelling		
	 Modelling of prime mover control system 		
	 Modelling of transformers, transmission lines and loads 		

4.	Power flow analysis and Optimal power flow		08
	General Concepts		
	Newton Raphson Method		
	Gauss Siedal Method		
	Decoupling Method		
	OPF with dynamic security constraint		
5.	Stability Analysis	PK &	05
	 Equilibrium Points and their stability 	AA	
	 Phasor diagram of synchronous machine 		
	 Small signal stability of multi machine system 		
6	Transient Analysis	A,P &	08
	 Numerical integration techniques for transient analysis 	S	
	 Transient analysis of a simple power system 		
	 Transient analysis of a multi machine power system 		
	 Different transient energy function function methods 		
	 Interchange Evaluation with Unit Commitment 		
	 Multiple-Utility Interchange Transactions 		
	Other Types of Interchange		
	Different stability enhancement and control methods		